Generalized Anxiety Disorder

People with generalized anxiety disorder (GAD) suffer from chronic and pervasive anxiety and worries about all-encompassing life situations. According toe criteria from the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; American Psychiatric Association, 2000), this excessive or ongoing anxiety and worry lasts for at least six months and is centered on numerous issues or events. Individuals diagnosed with GAD experience significant distress or impairment (e.g., in social or occupational functioning), have difficulty controlling worry, and have at least three of the following symptoms: restlessness, easy fatigue, irritability, muscle tension, or sleep disturbance.

Most frequently, the onset of GAD occurs in childhood or adolescence. In the Untied States, about 3 percent or more of the population shows symptoms of GAD each year (Kessler, Chiu, Demler, & Walters, 2005). GAD is diagnosed more frequently in women than in men.

Researchers have tried to explain the cause of this disorder from different perspectives. Family pedigree studies have found an increased likelihood of the disorder among blood relatives of a person with GAD. This suggests the possibility that GAD is an inherited disorder. Consistently, the link between GAD and dysfunction in the activity of gamma-aminobutyric acid (GABA) had been reported (Roy-Byrne, 2005). GABA is a neurotransmitter in the brain that carries inhibitory messages from one neuron to another, thus preventing the receiving neuron from firing. People with GAD are thought to have malfunctions in this GABA system, leading to a persistent rise in anxiety (because GABA fails to prevent the neurons from firing).

Cognitive theorists (e.g., Beck, Brown, Steer, Eidelson, & Riskind, 1987) assume that GAD is caused by dysfunctional ways of thinking, particularly holding a belief that danger is omnipresent. Research has consistently supported the idea that people with GAD have such beliefs (e.g., Riskind & Williams, 2005). More recently, other cognitive theorists have supplemented the original cognitive model of GAD. For instance, Adrian Wells (2005) has proposed the metacognition theory of generalized anxiety disorder, which emphasizes that people’s beliefs about worrying are the most pathogenic of their anxiety-related beliefs. Specifically, they value worrying as a means of problem solving but at the same time believe that worrying is both psychologically and physically harmful because society tells them that this is so. Thus they worry about worrying (called metaworrying). Another explanatory perspective on GAD is the sociocultural one, maintaining that societal conditions are related to development of GAD.

The most effective treatments for GAD are cognitive therapy, stress management training, and medication. All these treatmens produce moderate relief, though people can be still anxious. Cognitive therapy is used to change negative thinking patterns. Clients are encouraged to be aware of their dysfunctional thinking patterns that provoke their anxiety and to replace these thoughts with appropriate assumptions. Two stress management techniques that have been utilized for GAD are meditation and progressive muscle relaxation (progressively tensing and relaxing the various muscle groups throughout the body).

Antianxiety medications (anxiolytics) such as benzodiazepines are also used to treat people with GAD. Benzodiazepines enhance the ability of GABA to bind to receptor sites on receiving neurons, thus inhibiting the action of the receiving neuron, resulting in low bodily arousal and lessened levels of anxiety. Because benzodiazepines can cause physical dependency and side effects, they are usually prescribed for short periods of time. Other medications that show promise in the treatment of GAD include some antidepressants, beta blockers, and other antianxiety medications that work through different mechanisms than do the benzodiazepines. These newer drugs appear to have much less potential for addiction.

  • American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: Author.
  • Beck, A.T., Brown, G., Steer, R.A. Eidelson, J.I., & Riskind, J.H. (1987). Differentiating anxiety and depression: A test of the cognitive content-specificity hypothesis. Journal of Abnormal Psychology, 96, 179 – 183.
  • Kessler, R.C., Berglund, P., Demler, O., Jin, R., & Walters, E.E. (2005). Lifetime prevalence and age-of-onset distribution of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593 – 602.
  • Riskind, J.H., & Williams, N.L. (2005). The looming cognitive style and generalized anxiety disorder: Distinctive danger schemas and cognitive phenomenology. Cognitive Therapy and Research, 29, 7 – 27.
  • Roy-Byrne, P.P. (2005). The GABA-benzodiazepine receptor complex: Structure, function, and role in anxiety. Journal of Clinical Psychiatry, 66 (Suppl. 2), 14 – 20.
  • Wells, A. (2005). The metacognitive model of GAD: Assessment of meta-worry and relationship with DSM-IV generalized anxiety disorder. Cognitive Therapy Research, 29, 107 – 121.
  • Since cognitive science Opens in new window has taken on board this commonsense view of the mind, an important question is how such a relationship to a proposition can be implemented.

    The representation theory of mind (RTM; Field, 1978; Fodor, 1978) assumes that a propositional attitude consists in holding a representation of the proposition and that this representation plays a certain functional role in the economy of mental states. This can be best illustrated with the two core concepts: belief and desire.

    These are core concepts, since knowing what someone believes (thinks) to be the case (e.g., Max thinking the chocolate is in the cupboard and thinking that going there will get the chocolate into his possession) and what that person desires (wants) (e.g., Max wanting the chocolate to be in his possession) allows us to make a behavioral prediction that Max will approach the cupboard. This kind of inference is known since Aristotle as the practical syllogism.

    Searle (1983, after Anscombe, 1957) points out that these two states are mirror images in terms of causal direction and direction of fit. The function of a belief is to be caused by reality and the believed proposition should match reality.

    For instance, the chocolate being in the cupboard should be responsible for Max’s believing that the chocolate is in the cupboard (world to mind causation) and the proposition “the chocolate is in the cupboard” should thus match the relevant state of affairs in the world (mind should fit world).

    The function of desire (want) is to cause a change in the world (mind to world causation) so that the world conforms to the desired proposition (world should fit mind)—for example, if Max wants the chocolate to be in the cupboard, then this desire should cause action leading to a change of the chocolate’s location such that it conforms to what Max desires.

    This trivial-sounding example does highlight the important distinctions.

    Three Important Distinctions

    1. First vs. Third Person

    One important distinction is between first-person and third-person attribution of mental states. A third-person attribution is an attribution to another person and a first-person attribution is one to myself.

    For instance, if Max erroneously believes that the chocolate is still in the cupboard (because he didn’t see that it was unexpectedly put into the drawer), then a third-person observer will attribute a false belief to Max. In contrast, Max himself will make a first-person attribution of knowledge to himself.

    The observer can capture this difference between her own and Max’s subjective view by the second-order attribution that Max thinks he knows where the chocolate is. This is useful to keep in mind when it comes to false memories. Since a memory can only be a recollection of something that actually occurred, a false memory is not a memory by third-person attribution, although it is by first-person attribution.

    1. Sense and Reference

    A related second point has to do with Frege’s (1892/1960) distinction between sense and reference. Since mental states involve representations, they connect us to objects and events in the real (or a possible) world.

    Famously, Oedipus knew and married Iocaste (referent: a particular person), but he did not know or marry her as his mother but as an unrelated queen (sense: how Iocaste was presented to Oedipus’ mind).

    Thus, in third-person parlance we can say that Oedipus married his mother if we use the expression “his mother” to pick out (refer to) the individual whom he married without implying that he knew Iocaste under that description. In first-person description of the event Oedipus would not have used the descriptor “my mother.”

    These distinctions are useful to keep in mind when discussing infants’ ability to remember particular events: Whenever a memory trace of a unique event can be demonstrated then one can conclude (in first-person parlance) as a particular event—that is, that the infant makes cognitive distinctions that represent that event as a particular event.

    1. Having vs. Representing a Mental State

    The third important distinction is that between being in a mental state (or having an attitude) and representing that mental state.

    For understanding or knowing that a person is in a mental state, or to reflect on one’s own mental states, one has to be able to represent that state. In order to be able to represent a state, one needs a concept of that state—that is, a rich enough theory of mind.

    The study of how children acquire the requisite theory of mind is therefore essential for our understanding of how children come to understand memory. Furthermore, since some memorial states are reflective or self-referential, children need a theory of mind for being in such states or having such memories.

    Why We Need a Theory of Mind for Memory

    We probably do not need a theory of mind for implicit (nondeclarative Opens in new window) memory, but for explicit (declarative Opens in new window) memory we do, since “explicit memory is revealed when performance on a task requires conscious recollection of previous experiences.” (Schacter, 1987).

    To be conscious of a fact one requires to be also aware of the state with which one beholds that fact. The higher-order-thought theories of consciousness make this their core claim (Armstrong, 1980; Rosenthal, 1986).

    For instance, if one sees a state of affairs X (e.g., that the chocolate is in the cupboard), then this seeing is a first-order mental state (attitude).

    To be conscious of this state of affairs means, according to theory, that one entertains a second-order thought about the seeing—that is, the second-order thought represents the first-order seeing.

    A weaker version does not require that one has to entertain the second-order thought, but only that one has to have the potential for having the second-order thought (Carruthers, 1996). That some such condition must be true can be seen from the following consideration:

    “Could it ever be that I can genuinely claim that I am consciously aware of the chocolate being in the cupboard, but claim ignorance of the first-order mental state by which I behold this state of affairs—that is, by claiming that I have no clue as to whether I see, or just think of, or want the chocolate being in the cupboard?”

    The important point of these conceptual analyses is that to be conscious of some fact requires some minimal concept of knowledge or of some perceptual state like seeing.

    Unfortunately, there is no clear evidence when children understand a minimal state of this sort. There is some evidence of understanding (mother’s) emotional reactions and seeing (direction of gaze) in the first year of life (see Perner, 1991, chap. 6; Baldwin & Moses, 1996; Gopnik & Meltzoff, 1997, for summaries and discussion of problems of interpretation).

    There is also some recent evidence that between 8 and 12 months children might be inferring people’s intentions to grasp an object from where that person looks (Spelke, Philips, & Woodward, 1995) and even between 5 to 9 months from how a person touches an object (seemingly intentional or accidentally).

    And by 18 months (where children’s understanding of mental phenomena seems to flourish in general) children imitate people’s intended actions even when they observe a failed attempt (Meltzoff, 1955a) and they understand differences in preferences (e.g., that someone else can prefer cauliflower over biscuits, Repacholi & Gopnik, 1997).

    Evidence that children distinguish their knowledge from ignorance is available at a relatively late age. Povinelli, Perilloux, and Bierschwale (1993) asked children to look for a sticker under one of three cups.

    Children were first trained to look under the cup at which the experimenter had pointed. After some training even the youngest were able to do this.

    When asked to look without the experimenter pointing, an interesting developmental difference emerged. Children older than 2 years and 4 months acted without hesitation when they knew which the cup the sticker was under, but hesitated noticeably when—in the absence of the experimenter’s poining—they had to guess where it was.

    Interestingly this is also the age at which children start using the phrase “I don’t know” (Shatz, Wellman, & Silber, 1983). In contrast, children younger than that showed no comparable difference in reaction time. This may indicate that young 2-year-olds do not yet reflect on what they do and do not know.

    So, theory of mind research is not yet able to give a guideline for when infants might develop explicit, conscious memories. Memory development may help out on this point.

    Meltzoff (1985, 1995b) demonstrated that 14-month-old infants can reenact a past event (e.g., they imitate the experimenter leaning forward to touch a panel with forehead so that panel lights up) after several months. Recently this has been demonstrated in 11-month-olds with a delay of 3 months.

    Since this is achieved from a brief observational period and does not require prolonged learning, and since patients with amnesia cannot do this (McDonough, Mandler, KcKee, & Squire, 1995), it is tempting to conclude that such enactment demonstrates explicit, conscious memory.

    One should, though, keep in mind that delayed imitation that is based on a single event (third-person view) is not to be equated with a memory (knowledge) of that event as a single, past event (first-person view).

    Keep on learning:
      Adapted from: The Oxford Handbook of Memory. Authored by ENDEL TULVING (ED.), Fergus I. M. Craik